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Abstract: The objective of this study is to provide a straightforward generalized simple and quick
method for the prediction of the friction factor for fully developed laminar flow of viscoplastic shear-
thinning fluids in non-circular channels of regular cross-sections. The most frequently represented
substances processed under these conditions are polymers in the processing and plastics industry.
A generalized approximate method was proposed to express the relationship between the friction
factor and the Reynolds number for the Herschel–Bulkley rheological model. This method uses the
generalized Reynolds number for power-law fluids. Moreover, an additional simplified method
for rapid engineering calculations was obtained as well. The suggested method was verified by
comparing experimental data for concentric annulus found in the literature and results from simula-
tions for concentric annulus, rectangular, square duct with a central cylindrical core and elliptical
cross-sections. The results showed that the suggested methods enable us to estimate the friction
factor with high accuracy for the investigated geometries.

Keywords: viscoplastic shear-thinning fluids; non-circular channels; laminar flow; Herschel–Bulkley
model; friction factor

1. Introduction

Viscoplastic fluids are an important class of non-Newtonian fluids and can be encoun-
tered in a variety of applications in the polymer industry [1–4]. The identifying mark of
viscoplastic fluids is the presence of yield stress. Such fluids start to flow when the imposed
shear stress is greater than the yield stress. On the other hand, when the applied shear
stress is smaller than the yield stress, the material inside a duct behaves like an elastic
plumb [5,6]. Polymer melts and biopolymers possess yield stress which ranks them among
viscoplastic fluids, and their flow exhibits shear-thinning behavior [7–11].

The friction factor is one of the most frequently used non-dimensional design parame-
ters in order to predict frictional pressure drop in channels or equipment which is necessary
to calculate pump capacity [12], in material handling [13], designing heat exchangers [14],
designing extrusion dies [15]. The generalized methods for calculation of hydraulic char-
acteristics (friction factors) are usually restricted to zero yield stress liquids (power law
models) and Bingham viscoplastic model [2,16]. Regarding the prediction of friction factor
of fully developed viscoplastic shear-thinning fluids through channels, many of the works
in literature are focused on eccentric-concentric annuli, parallel plates, circular duct, and
open channels [16–19]. Few studies in the literature provide a generalized solution for
friction-factor predictions in non-circular channels which rely on numerical methods [15].

The purpose of this article is to devise a straightforward expression that enables the
calculation of pressure drop for the laminar flow of viscoplastic shear-thinning fluids
(without thixotropy) through non-circular channels based on the Herschel–Bulkley rheo-
logical model. The method is based on the Rabinowitsch–Mooney equation and the friction
factor–Reynolds number relationship is represented by using two geometrical parameters
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(a and b) suggested by Kozicki [20]. The suggested method is validated for concentric
annulus, rectangular, square duct with a central cylindrical core, and elliptical cross-sections
(Figure 1), by using numerical methods and experimental data found in the literature.
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2. Materials and Methods

In the laminar regime, which is the most common regime in the polymer industry,
the friction factor depends on the Reynolds number and cross-sectional geometry of the
channel. In the case of Newtonian fluid flow, the friction factor–Reynolds number relation
(λ–Re) is

λReN = C (1)

where ReN is the Reynolds number for Newtonian flow, C is the constant depending on the
geometry, and λ is the Fanning factor given by:

λ =
τw
ρu 2

2

(2)

where τw is the wall shear stress, ρ represents the density, and u represents the mean velocity.
Regardless of the rheological model of the fluid, τw is expressed by the following equation:

τw =
∆P
L

DH
4

(3)

where DH is the hydraulic diameter (DH = 4S/P), L represents the channel length, and ∆P
the pressure drop along the channel. The power-law model is a frequently used rheological
model to describe shear-thinning fluids, given by:

τ = K
.
γ

n (4)

In Equation (4), K is the coefficient of consistency, n is the flow index and
.
γ is the

shear rate (second invariant of the rate of deformation tensor). For the power-law model,
fluid exhibits shear-thinning characteristics for 0 < n < 1, or shear-thickening (so-called
dilatant) for n > 1. The unique case of n = 1 corresponds to the Newtonian case. The
relationship between τw and u was investigated extensively by Kozicki et al. [20] for the
flow of purely viscous fluids in non-circular channels and various rheological models based
on the Rabinowitsch–Mooney equation.
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For the power-law fluids, the relationship of τw and u is described by Kozicki’s two-
parameter model as follows:

τw = K
[(

b +
a
n

) 8u
Dh

]n
(5)

where a and b are geometrical parameters. Their values for investigated geometries can be
found in the publications of Kozicki et al. [20] and Sestak et al. [21]. For circular channel
a = 0.25, b = 0.75, and for parallel plates a = 0.5, b = 1. The following relationships exist for
the geometrical parameters a, b, and C:

a =
C
32

u
umax

(6)

16(a + b) = C (7)

The λ–Re relationship for power-law fluid can be obtained from Equations (2) and (5),
giving:

λReG = 16 (8)

In Equation (8), ReG is generalized Reynolds given as:

ReG =
ρu 2−nDh

n

8n−1K(b + a/n)n (9)

Deplace and Leuilet [2] simplified Equation (8) by reducing two parameters, a and b,
to one geometrical parameter—C, as follows:

v =
b
a
=

48
C

(10)

As mentioned above, the Bingham model is one of the simplest two-parameter rheo-
logical models for viscoplastic fluids, described by the following equations:

τ = τ0 + µP
.
γ If τ > τ0 (11)

.
γ = 0 If τ ≤ τ0

In Equation (13), µP is the plastic viscosity and τ0 is the yield stress. For the flow of
Bingham fluids, the relationship between τw and u for non-circular channels is given by
Kozicki’s equation [20] as follows:

8u
Dh

=
τw

µp

[
1

(a + b)
− ∅

b
+

a∅ b
a +1

b(a + b)

]
(12)

In Equation (12), the term ∅ is given by:

∅ =
τ0

τw
(13)

After rearranging, Equation (12) can be expressed alternatively as follows:

8u
Dh

=
τw

µp

(1 −∅)

(a + b)

[
1 − a∅

b
− a∅2

b
− a∅3(1 −∅ b

a −2)

b(1 −∅)

]
(14)

Another frequently used model to describe viscoplastic shear-thinning fluids is the
Herschel–Bulkley model which involves three parameters:

τ = τ0 + K
.
γ

n If τ > τ0 (15)
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.
γ = 0 If τ ≤ τ0

For the Herschel–Bulkley model, when using the Rabinowitsch–Mooney equation, the
relationship of τw and u for the circular pipe is described as:

8u
D

=
[τw

K

] 1
n 4n

3n + 1
(1 −∅)

1
n

[
1 − ∅

(2n + 1)
− 2n∅2

(2n + 1)(n + 1)
− 2n2∅3

(2n + 1)(n + 1)

]
(16)

and for parallel plate, the relationship of τw and u is:

8u
Dh

=
[τw

K

] 1
n 2n

2n + 1
(1 −∅)

1
n

[
1 − ∅

(n + 1)
− n∅2

(n + 1)

]
(17)

From Equations (14), (16), and (17), the relationship of τw and u for the non-circular
channels in terms of geometrical parameters a and b can be approximately expressed for
the Herschel–Bulkley model as follows:

8u
Dh

=
[τw

K

] 1
n (1 −∅)

1
n(

b + a
n
) [1 − ∅

(v − 1)n + 1
− (v − 1)n∅2

[(v − 1)n + 1][(v − 2)n + 1]
− (v − 1)n2∅3(1 −∅n(v−2))

[(v − 1)n + 1][(v − 2)n + 1](1 −∅n)

]
(18)

where v = b/a. If n = 1, Equation (18) reduces to Equation (14). If ∅ = 0, Equation (18)
reduces to Equation (5). For circular cross-sections (v = 3), Equation (18) becomes
Equation (16) and for parallel plate (v = 2), Equation (18) is equal to Equation (17).

Substituting Equation (18) to Equation (2), the λ–Re relationship for the fully devel-
oped, laminar, non-circular channels for the Herschel–Bulkley model can be expressed as:

λReG =
16

(1 −∅)θn (19)

and in Equation (19) the term θ is given by:

θ =

[
1 − ∅

(v − 1)n + 1
− (v − 1)n∅2

[(v − 1)n + 1][(v − 2)n + 1]

[
1 − n∅(1 −∅v−2)

(1 −∅)

]]
(20)

The term ∅ given in Equation (13) can be described in terms of τ0 and λ as follows:

∅ =
τ0

λρu 2

2

(21)

Equation (18) is relatively complex; simpler expression can be obtained by eliminating
its last term. Therefore, a simpler expression for the term θ given in Equation (20) can be
written as follows:

θs =

[
1 − ∅

(v − 1)n + 1

[
1 − (v − 1)n∅

[(v − 2)n + 1]

]]
(22)

Hence, friction factor–Reynolds number expression can be stated as:

λReG =
16

(1 −∅)θsn (23)

Calculation procedures for the estimation of the friction factor are given in Appendix A.
In addition, the parameter v can be obtained from the method suggested by Delplace and
Leuliet [2] given in Equation (10) for a simpler prediction of friction factor. In this study,
the critical Reynolds number for the onset of turbulence is considered as 2000 for ReG.
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3. Validation

The validation of the suggested method is carried out by comparison with experi-
mental data available in the literature, and by simulations. Fordham et al. [19] suggested
a practical method in order to predict pressure drop in the concentric annulus and pro-
posed a method validated experimentally using 0.5% aqueous solution of xanthan gum
(τ0 = 1.59 Pa, K = 0.143 Pa.sn, n = 0.54). The comparison between predicted pressure drop
values from Equation (19) and experimental data provided by Fordham et al. [19] for the
concentric annulus is shown in Figure 2. The results indicate that the suggested method
has a good relationship to experimental data. The maximum deviation has been found to
be less than 10% and the average deviation was found to be 5%.
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Figure 2. Comparison between Equation (16) and experimental data reported by Fordham et al. [19]
for concentric annulus with Di = 0.04 m and Do = 0.05 m. (Adapted with permission from [19].
Copyright {1991} American Chemical Society).

Ahmed [22] investigated the accuracy of hydraulic models by experimentally predict-
ing the pressure loss for the isothermal laminar flow of viscoplastic shear-thinning fluids in
concentric and eccentric annuli (in this study, only experimental results of the concentric
annulus are considered). In experiments, xanthan gum (XCD, τ0 = 9.1 Pa, K = 1.01 Pa.sn,
n = 0.48) and mixtures of xanthan gum and polyanionic cellulose (XCD-PAC, τ0 = 3.8 Pa,
K = 2.98 Pa.sn, n = 0.4) were used as test fluids. Evaluated pressure losses by Equation (19)
and its comparison with experimental results are presented in Figure 3.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 9 
 

 

3. Validation 

The validation of the suggested method is carried out by comparison with experi-

mental data available in the literature, and by simulations. Fordham et al. [19] suggested 

a practical method in order to predict pressure drop in the concentric annulus and pro-

posed a method validated experimentally using 0.5% aqueous solution of xanthan gum 

(τ0 = 1.59 Pa, K = 0.143 Pa.sn, n = 0.54). The comparison between predicted pressure drop 

values from Equation (19) and experimental data provided by Fordham et al. [19] for the 

concentric annulus is shown in Figure 2. The results indicate that the suggested method 

has a good relationship to experimental data. The maximum deviation has been found to 

be less than 10% and the average deviation was found to be 5%. 

 

Figure 2. Comparison between Equation (16) and experimental data reported by Fordham et al. [19] 

for concentric annulus with 𝐷𝑖= 0.04 m and 𝐷𝑜 = 0.05 m. ("Adapted with permission from [19]. Cop-

yright {1991} American Chemical Society.) 

Ahmed [22] investigated the accuracy of hydraulic models by experimentally pre-

dicting the pressure loss for the isothermal laminar flow of viscoplastic shear-thinning 

fluids in concentric and eccentric annuli (in this study, only experimental results of the 

concentric annulus are considered). In experiments, xanthan gum (XCD, 𝜏0 = 9.1 Pa, K = 

1.01 Pa.sn, n = 0.48) and mixtures of xanthan gum and polyanionic cellulose (XCD-PAC, 

𝜏0 = 3.8 Pa, K = 2.98 Pa.sn, n = 0.4) were used as test fluids. Evaluated pressure losses by 

Equation (19) and its comparison with experimental results are presented in Figure 3. 

  

Figure 3. Comparison between Equation (19) and experimental data provided by Ahmed [22] for 

concentric annulus with 𝐷𝑖= 0.0127 m and 𝐷𝑜 = 0.03505 m. (A) XCD-PAC, (B) XCD. 

It was found that the maximum difference between pressure loss obtained from 

Equation (19) and experimental results was less than 8%, and the average deviation was 

obtained as 6%. 

Figure 3. Comparison between Equation (19) and experimental data provided by Ahmed [22] for
concentric annulus with Di = 0.0127 m and Do = 0.03505 m. (A) XCD-PAC, (B) XCD.

It was found that the maximum difference between pressure loss obtained from
Equation (19) and experimental results was less than 8%, and the average deviation was
obtained as 6%.
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In addition, the provided method has been verified by employing simulations using
commercial software ANSYS Fluent 19.2. The validation was implemented by comparing
λReG values acquired numerically and from Equation (19). Three-dimensional simulations
have been carried out for steady-state, incompressible, isothermal, laminar flow of Herschel–
Bulkley fluids in concentric annuli, square duct with a central cylindrical core rectangular,
and elliptical cross-sectional geometries. The axial lengths of the channels were taken to be
greater than 50Dh and half of the channels have been modeled due to the symmetry. Mesh
sensitivity analysis was performed to obtain optimum mesh configuration and numbers
of mesh elements for simulations. The procedure was carried out by comparing the effect
of the number of mesh elements on obtained friction factor (λ) by simulations shown in
Figure 4. Hence, four different numbers of mesh elements were tested, and 140,000–200,000
structural mesh elements were used in simulations (Figure 5). The deviation between
points represents the mesh density effect. The optimum mesh represents the acceptable
numerical error and computational time.
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Especially fine mesh elements were preferred next to the wall and coarse elements
were created in the middle sections [23]. The simulations were conducted for ReG < 100.
Regarding the boundary conditions, inlet velocity and outlet pressure boundary conditions
were applied at the inlet and outlet sections, respectively. Channel walls were chosen
as stationary, with no slip on the wall. Symmetry boundary condition was imposed on
symmetry planes. The SIMPLE algorithm was used for the velocity–pressure coupling. The
second-order discretization scheme was adopted for pressure and momentum equations
along with Green–Gauss node-based gradient option. Simulations were assumed to be
converged when the residuals of continuity fell below 10−8.
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Friction factor values were computed from the pressure drop values within the fully
developed flow region of the channels. Calculated ∅ values from the result of simula-
tions were between 0.04 and 0.62. The comparison between obtained λReN values using
Equation (19) and simulations are displayed in Figure 6. From the acquired results, one can
deduce that λReN values obtained by Equation (19) are slightly higher than those predicted
by simulations. The deviations decrease with increasing values of n for all investigated
geometries. The highest deviations were found for n = 0.3 which corresponds to the highest
∅ values. For rectangular channels, the suggested method shows a good agreement with
the simulation results. The maximum deviation was found to be 7% and the average devia-
tion was obtained as 5% between the two methods. For concentric annulus, the deviations
between the suggested method and numerical results are less than 5% and the highest
disagreement was found for Ri/Ro = 0.2. Regarding the elliptical channels, deviations
increase with decreasing values of X/Y, and the maximum difference was found as 4%.
For the square duct with a central cylindrical core, the maximum deviation was found to
be less than 4%. Regarding the simplified method given in Equation (23), the difference
between predictions between Equation (19) and Equation (23) were found to be less than
4% for the investigated rheological parameters and geometries. The average deviation was
found to be between 3–4% for investigated geometries except for rectangular channels. The
comparisons reveal that the suggested method provides a determination of the friction
factor with high accuracy for Herschel–Bulkley fluids.
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Figure 6. The comparison between evaluated λReN values from suggested method and simulations.
(A) Rectangular channel, τ0 = 50 Pa, K = 5 Pa.sn, u = 0.1 m/s, W = 10 mm, 0.3 ≤ n ≤ 0.7; (B)
Concentric annuli, τ0 = 50 Pa, K = 5 Pa.sn, u = 0.5 m/s, Do = 10 mm, 0.3 ≤ n ≤ 0.7; (C) Elliptical
channel, τ0 = 50 Pa, K = 5 Pa.sn, u = 0.1 m/s, Y = 10 mm, 0.3 ≤ n ≤ 0.7; (D) Square duct with a central
cylindrical core, τ0 = 50 Pa, K = 5 Pa.sn, u = 0.5 m/s, D = 10 mm, 0.3 ≤ n ≤ 0.7.
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4. Conclusions

In this study, a fully developed, isothermal, laminar flow of viscoplastic shear-thinning
fluids in non-circular channels was investigated for the Herschel–Bulkley model and by a
correlation proposed for the estimation of the friction factor. The demand for fast and simple
calculations is placed on designers of machines and equipment in the plastics industry.
A simple equation or script that would be part of the design software for the prediction
of friction losses during polymer flow would certainly be beneficial. A new method was
obtained by using flow equations for slit and circular channels for Herschel–Bulkley fluids
and the method suggested by Kozicki et al. [20] for Bingham fluids. Then, the friction
factor–Reynolds number correlation is expressed using the generalized Reynolds number
proposed by Kozicki et al. [20] which requires two geometrical parameters. The suggested
method was verified for concentric annuli by utilizing experimental results reported in
the literature and by using simulations for concentric annuli, rectangular and elliptical
cross-sections. The results of the comparison revealed that the suggested method enables
the estimation of friction factor with a deviation of less than 10%, which is the standard
acceptable error for machine designing. From the simulation results, it was found that the
accuracy of the suggested method decreases with decreasing values of n. However, the
highest found deviation was 7% for rectangular channels. Furthermore, smaller deviations
were found when other geometries were used. Consequently, the results of validations
showed that the proposed method enables the estimation of the laminar flow friction factor
for Herschel–Bulkley fluids in non-circular channels with high accuracy and can be helpful
for plastic engineers.
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Appendix A

The problem can be formulated as follows: Calculate the pressure drop in a pipe given:

(1) Rheological parameters of the Herschel–Bulkley model (K-consistency, n-flow index,
and yield stress τ0),

(2) Three geometry parameters characterizing the cross-section of pipe (equivalent diam-
eter DH= 4S/P and dimensionless parameters a, b designed by Kozicky, defining the
shape of the cross-section.

(3) Flowrate or mean velocity of the liquid u, assuming fully developed laminar simple
shear flow in a channel of arbitrary cross-section and length L.

The procedure can be described as follows:

(1) Calculate the Reynolds number derived by Kozicki, ReG = ρu 2−nDh
n

8n−1K(b+a/n)n

(2) Calculate dimensionless yield stress ∅ (Equation (21)) assuming friction factor λ from
the previous iteration

(3) Calculate auxiliary parameter θ Equation (19) or Equation (23) using v = a/b
(4) Calculate friction factor λ and iterate back to step 2 until sufficient accuracy is achieved

λReG =
16

(1 −∅)θn
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(5) Calculate pressure drop from friction factor λ and mean velocity, u

∆P =
4λL
Dh

ρu2

2
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